
International Journal of Instruction April 2021 ● Vol.14, No.2

e-ISSN: 1308-1470 ● www.e-iji.net p-ISSN: 1694-609X
pp. 27-44

Citation: Kátai, Z., & Osztián, E. (2021). Improving AlgoRythmics Teaching-Learning Environment

by Asking Questions. International Journal of Instruction, 14(2), 27-44.

https://doi.org/10.29333/iji.2021.1423a

Article submission code:
20200305042001

Received: 05/03/2020
Revision: 22/08/2020

Accepted: 14/09/2020
OnlineFirst: 03/01/2021

Improving AlgoRythmics Teaching-Learning Environment by Asking

Questions

Zoltán Kátai

Sapientia Hungarian University of Transylvania, Romania,

katai_zoltan@ms.sapientia.ro

Erika Osztián

Sapientia Hungarian University of Transylvania, Romania, osztian@ms.sapientia.ro

 In this paper the challenge of promoting computational thinking for all by
contextualized computing education is addressed. The two phases learning session
we designed was implemented in the AlgoRythmics environment which includes
ten algorithmic dance choreographies (and attached interactive computer
animations). In addition to previous studies that had focused only on supporting
students in assimilating the strategy of the studied algorithms, this study examined
whether they are able to build on this knowledge by extracting from visualizations
some algorithm efficiency related concepts too. To this end, the learning
environment was complemented/supplemented with targeted questioning (with and
without teacher guidance). Participants (first year undergraduate students) were
grouped based on the number of years they had learned programming in high
school (0, 1/2 or 4 years). We performed two analyses: (1) group-0 vs. group-1/2
and group-4 (N=181; self-paced setting: algorithm visualization complemented
with teacher prepared questions); (2) group-0 (one-group pretest-posttest design,
N=46; supplementary Socratic questioning). Research results revealed that the
AlgoRythmics environment, if complemented/supplemented with tutorial question-
asking, could be an effective instrument in introducing students with no prior
knowledge in computing (group-0), even with deeper Computer Science concepts
such as algorithm efficiency.

Keywords: instruction, learning environments, computational thinking, algorithm
visualization, questioning

INTRODUCTION

Nowadays it is commonly accepted that computational thinking (CT) is an essential
mindset for all students of the digital era. Although the phrase computational thinking
was introduced by Seymour Papert (1980), it was brought to the forefront of the
Computer Science (CS) education community only more than 25 years later by Jeannette

http://www.e-iji.net/
https://doi.org/10.29333/iji.2021.1423a

28 Improving AlgoRythmics Teaching-Learning Environment …

International Journal of Instruction, April 2021 ● Vol.14, No.2

Wing (2006). Wing describes CT as a formative skill on a par with reading, writing and
arithmetic, and emphasizes that everyone, not just computer scientists, would be eager to
learn and use. Since the concept of CT can be defined as the thought process involved in
formulating problems so that their solutions can be represented as computational steps
and algorithms (Aho, 2012), a natural way to address the CT for all issue is computing
education for all. For example, Echeverría et al. (2017) emphasize that computing is a
skill required for any engineering field.

A possible approach to make computing education attractive for different category of
learners (including K-12 learners and non-CS majors) is contextualization (Guzdial,
2010). For example, in the case of non-CS majors the context should be related to the
major field of the students. Since developing differentiated teaching–learning strategies
may involve substantial additional costs, some scholars have tried to find a context that
is appealing to most students. A promising candidate for this “common denominator
role” could be arts (Tew et al., 2005; Guzdial & Tew, 2006; Simon et al., 2010; Daily et
al., 2014; Wood et al., 2016). The AlgoRythmics learning environment (Katai et al.,
2020) was designed along this approach. Since music and dance are relatively close to
most young people, this environment visualizes basic computer algorithms (searching
and sorting) by professional dance choreographies. In addition, to each dance
choreography an interactive computer animation was attached. The videos are also
accessible by the AlgoRythmics YouTube channel and they have got millions of views
(Katai & Toth, 2011; Katai et al., 2018).

In this paper we address the following issue: what is the best practice for incorporating
the AlgoRythmics environment, and other similar environments, in the process of
teaching and learning algorithms. Modern learning theories emphasize the superiority of
those teaching approaches that facilitate student-centered learning (Tamim & Grant,
2013; Wijnen et al., 2017). All previous AlgoRythmics studies implemented this
principle by using only self-paced learning settings (without any teacher intervention).
On the other hand, our experience (as CS teachers) with this environment (and the
feedback from many colleagues) made it clear to us that without teacher support the
potential these visualizations incorporate, as CT promoter tools, can only be partially
exploited. For example, definitions of CT often present the concept of algorithm
efficiency as an important component of this ability (Shute et al., 2017; CSTE, 2020). It
is hard to imagine that students without any prior experience in computing would be
able to “discover” the best case and worst case behavior of the algorithms without
teacher guidance.

An effective teacher practice that harmonizes with the principle of student-centered
learning could be that of asking effective questions during student problem solving
(Boyer et al., 2010). Accordingly, in this study we analyze a learning setting built
around AlgoRythmics visualizations, where the principle of active involvement is
implemented by question asking: with teacher guidance (teacher guided Socratic
questioning) and without teacher guidance (students are asked to answer teacher
prepared questions in a self-paced way).

Kátai & Osztián 29

International Journal of Instruction, April 2021 ● Vol.14, No.2

The majority of previous studies that investigated question-asking from instructional
perspective (in the context of CS education) focused on supporting students in coding
(programming, data structures, etc.). For example, Boyer et al. (2010) analyzed the
efficiency of one-on-one tutoring approach during a problem solving process that
involved applying array data structures and for loops. In the study performed by Lane
and Van Lehn (2005) the content to be assimilated was control flow (conditionals and
loops) and how to write simple subprograms. These authors conclude that asking
effective questions during the early phases of planning a solution can support the
students’ comprehension and decomposition of the problem at hand. Tenenberg and
Murphy (2005) found that asking specific questions is useful for revealing knowledge
gaps with novices, who are often unable to articulate their questions. The administered
quiz aimed to assess students’ data structures knowledge. Razmov and Anderson (2006)
examined the value of open-ended questions in the context of an undergraduate course
in software engineering. In addition to these studies, we have proposed to examine the
effectiveness of question-asking in the context of algorithm visualization with respect to
undergraduate students without any prior knowledge in programming.

Previous work

The AlgoRythmics project was initiated more than ten years ago. The first six videos
(sorting strategies illustrated by folkdance performances) were posted on the
AlgoRythmics YouTube channel in 2011. After this a web application was developed
and to each dance choreography an expressive interactive computer animation was
attached. The principle of active involvement was implemented by inviting students to
reconstruct/orchestrate the studied algorithm for different inputs (to interactively predict
the corresponding operation sequence). In 2018 four new videos were added to the
AlgoRythmics collection (heap-sort illustrated by a new folk dance choreography; linear
and binary search illustrated by flamenco dances; the backtracking solution for the four-
queens problem illustrated by a ballet performance) and the web application was
redesigned and extended with new modules.

Previous research on the AlgoRythmics environment (Katai, 2014a, 2014b, 2015, 2020)
concentrate mostly on the potential incorporated in the dance choreographies
(supplemented with computer animations) to support different categories of students in
understanding the strategy of the algorithms. Research results confirmed this potential.
For example, two studies addressed the issue of promoting the CT of both science and
humanities oriented students. These investigations resulted in the following conclusions:
(1) properly calibrated learning environments have the potential to effectively promote
the CT of both sciences-oriented and humanities-oriented students (Katai, 2015); (2)
although sciences-oriented students’ motivational-scores were consistently superior to
their humanities-oriented colleagues, there was strong correlation between them and
differences diminished as both groups advanced with their learning tasks (Katai, 2020).

None of the previous research has examined if students are also able to build on the
knowledge they have acquired (understanding the strategy of the studied algorithm).
Consequently, in this study we investigate the following questions, with respect to a
corresponding two phase (1: self-paced; 2: teacher guided) learning session:

30 Improving AlgoRythmics Teaching-Learning Environment …

International Journal of Instruction, April 2021 ● Vol.14, No.2

 (RQ-1, phase-1) Are AlgoRythmics visualizations expressive enough, when
complemented with targeted questions, to support students without prior
knowledge in computing to imagine the best and worst case behaviour of
algorithms?

 (RQ-2, phase-2) Can a supplementary teacher-guided, question-and-answer
session (Socratic questioning based on the phase-1 questions) contribute
significantly to students’ phase-1 understanding?

Asking Questions to Support Learning with Visual Representations

The instructional method we designed and implemented is grounded in the Cognitive
Apprenticeship Theory (Collins et al., 1991; Caspersen & Bennedsen, 2007). Cognitive
Apprenticeship uses guided learning environments to support students in assimilating
the learning content. An important characteristic of this approach is that support is
reduced so that students can apply their acquired knowledge and skills as independent
learners (Ghefaili, 2003). An effective method for implementing this moderate support
could be the asking of targeted questions.

In line with prior research in the field, tutorial question asking could prove to be an
efficient method of engaging students in meaningful learning (Graesser & Person,
1994). Boyer et al. (2010) reports on the positive results of asking effective questions to
support students’ learning in a CS educational context. These authors emphasise that the
effective use of questions has the potential to prompt students to engage in valuable
learning behaviours that they might not otherwise have undertaken. For example, it
facilitates comprehension, encourages self-explanation, and reveals incomplete or
incorrect knowledge. With respect to Socratic questioning, El-Zakhem (2016) draws
attention to its role in encouraging critical thinking through rational arguments.

Tawfik et al. (2020), also emhasize that an important component of knowledge
construction during problem-solving is the ability to ask meaningful questions. Boyer et
al. (2010) suggest that studying student questions and investigating the impact of
instructor questions should be considered complementary lines of research. After they
have revised several existing theories in the field (role of questions in inquiry‑based
instruction), Tawfik et al. (2020) conclude that many models focus on how to elucidate
and later replicate the expert reasoning process for novices within learning
environments. Attaching a teacher prepared question sequence to a self-paced learning
session can be seen as a subtle method for aligning the way of thinking of a novice to the
reasoning of an expert.

In addition, as mentioned above, studying algorithms with the AlgoRythmics
environment falls in the framework of contextualized computing education. Besides its
evident advantages, Guzdial (2010) draws attention to possible negative side effects of
contextualization. For example, overemphasizing a context can obstruct knowledge
transfer. Although the AlgoRythmics environment involves the context only at the level
of appealing decorative elements, the dangers of distraction still persist. Prior research
shows that the effectiveness of learning with visual representations critically depends on

Kátai & Osztián 31

International Journal of Instruction, April 2021 ● Vol.14, No.2

students’ ability to make sense of the corresponding visual educational materials (Wu &
Rau, 2018). Several studies conclude that effective instructional activities could support
students in realizing how visual representations depict information about the content
(Ainsworth, 2006; Rau, 2016). Without this support, students often focus on irrelevant
surface features and fail to depict domain-relevant concepts (especially in the case of
decorative illustrations) (Wu & Rau, 2018). According to Boyer et al. (2010), asking
targeted questions could be an effective method to direct student’s attention, for
example, toward the relevant aspects of the visualizations.

Tofade et al. (2013) also argue that using questions is an effective way to stimulate the
recall of prior knowledge, promote comprehension, and build critical-thinking skills.
Well worded questions can stimulate students to think about a topic in a new way.
Effective teachers are able to formulate questions to fit the cognitive level of students.
Other characteristics of the effective use of questions are: careful phrasing and word
clarity; creating a psychologically safe environment; appropriate sequencing and
balance; properly calibrated wait time.

Accordingly, we sequenced the algorithms according to the principle of moderate-
progressive challenge: linear search, binary search, bubble sort (although bubble sort is
not the most intuitive sorting strategy, after being visualized, students usually realize its
strategy quite easily). The questions attached to each algorithm were also sequenced
according to this principle. In order to implement the suggestion regarding the careful
phrasing and word clarity, expressions like “best/ worst case” and “comparing
operation” were supplemented with synonyms like “happiest/ most unfortunate case”
and “comparing scene”, respectively.

METHOD

We designed the following three phase learning-testing session:

1. After a brief introduction participants were invited to watch and analyze the
dynamic visualizations of three algorithms (linear and binary search: dance
video played twice; bubble sort: dance video plus animation); After each
visualization they had to answer algorithm complexity questions;

(The visualizations helped students in realizing the strategies the algorithms apply; The
attached question-sequences guided them in imagining the best and worst case
behaviour of the studied algorithms);

2. By questioning (using additional leading questions) the instructor helped students
realize/discover the right answers to the phase-1 questions;

3. Students were presented with the phase-1 learning conditions again, but built
around a new algorithm (selection sort: dance video plus animation followed by
algorithm complexity questions).

We tested the effectiveness of this three phase learning unit on first year engineering
students without any prior programming experience. We anticipated that

32 Improving AlgoRythmics Teaching-Learning Environment …

International Journal of Instruction, April 2021 ● Vol.14, No.2

 (Hypothesis-1) participants would assimilate the algorithms at a satisfactory
level, even during the first phase of the learning session (as reflected in
students’ answers to the phase-1 questions);

 (Hypothesis-2) phase-2 instructional intervention will contribute significantly to
students’ understanding (as reflected in their answers to the phase-3 questions).

We used a quasi-experimental (causal-comparative) research design. The experiment
took place at the beginning of the academic year and all first year undergraduate
students (181, 87% male) were invited to participate in the investigation. With respect to
Hypothesis-1 (for the phase-1 part of the experiment), we identified as independent
variable the number of years participants had learned programming in high school:
group-0 (0 year, 27%); group-1/2 (1 or 2 years, 25%); group-4 (4 years, 48%). The high
school curriculum for group-1/2 included searching and quadratic sorting algorithms at a
basic level. Accordingly, these participants had already been introduced with the
strategies these algorithms apply, but time complexity related concepts (like best and
worst case behaviour) were new to them.

For this phase of the experiment group-0 was the experimental group and group-1/2 the
control. We were wondering if AlgoRythmics environment (complemented with a
targeted question sequence) has the potential to help group-0 students catch up with
their group-1/2 counterparts (group-4 was involved in this analysis as a kind of
secondary control group; their high school curriculum included both the algorithms and
concepts of complexity). We considered as dependent variable participants’ phase-1
performance (based on their answers to the attached questions).

In the second and third phases of the experiment only group-0 was involved. We
implemented a one-group pretest-posttest design. Again, the dependent variable was
participants’ performance (pretest: phase-1 score, posttest: phase-3 score). According to
our second hypothesis, we anticipated that after being invited to actively participate in
the teacher guided classroom discussion (phase-2), group-0 students would score
significantly higher on the third phase questions than they did on the first phase ones.

Materials

Because the particularity of the environment (its uniqueness) lies in the algorithmic
dance-choreographies (supplemented with animations), we proposed to test, first of all,
the potential these visualizations incorporate. Accordingly, we intentionally created a
quite extreme in-class learning environment. Before starting the experiment, the teacher
offered students only a minimal algorithmic intro (what an algorithm is and what a
searching or comparison-based sorting algorithm/strategy is: succession of comparing or
comparing/swapping operations). For the group-0 students this was their first contact
with computer algorithms.

Because of their simplicity, searching algorithms were presented only as dance
performances (played two times). In the case of the sorting algorithms, first the dance
choreography and next the computer animation were played. During the first plays
students became familiar with the environment and the algorithm (for example, how

Kátai & Osztián 33

International Journal of Instruction, April 2021 ● Vol.14, No.2

comparing/swapping operations were danced). They were encouraged to focus on that
content to which the questions related during the second play (or during the animation in
the case of the sorting algorithms). The answers had to be provided only after they had
finished viewing the visualization as a system-paced instructional material. An important
but surprising finding reported in the (Berney & Bétrancourt, 2016) meta-analysis is that
the positive effect of animation over static graphics was found only when learners did
not control the pace of the display.

The visualizations illustrate the studied searching/sorting algorithms on given random
sequences. As mentioned above, to stimulate participants to reflect on the strategies the
algorithms apply, the attached question sequences requested subjects to imagine the best
and worst case behaviour of the algorithms. In the description below, question-code
Qx.y.z can be interpreted as follows: phase-x, algorithm-y, question-z.

The questions attached to the linear search (Q1.1.1-7) and binary search (Q1.2.1-7)
algorithms were the followings:

 (1-3) How many comparison operations (comparing scenes) does the linear (or
binary) search algorithm imply (for a list with 7/31/N elements) in the “best
case” (”happiest case”)?

 (4-6) How many comparison operations (comparing scenes) does the linear (or
binary) search algorithm imply (for a list with 7/31/N elements) in the “worst
case” (”most unfortunate case”)?

 (7) What is the “worst case” with respect to the linear search algorithm?

The question groups appeared on students’ questionnaires as individual questions
(corresponding to lists with 7, 31 and N elements, respectively). We chose values 7 (2

3
-

1) and 31 (2
5
-1) in order to have clear middle elements with respect to all current sub-

sequences during the binary search algorithm.

To the bubble sort algorithm two questions were attached (Q1.3.1-2):

 (1-2) How many comparison operations does the bubble sort algorithm imply
(for a list with 10 elements) in the “best case”/ “worst case” (the sequence is
already sorted in ascending/ descending order)?

After students answered these questions, they were asked (via an extra synthesis
question; Q1.4.1) to consider the relative effectiveness of the studied algorithms:

 (1) When is the “sorting + binary-search” strategy preferable to linear search? (a)
for sequences with many elements; (b) if the searching operation has to be
performed repeatedly (many times); (c) for sequences with large elements; (d)
other?

Some questions and formulas that were analyzed during the second phase of the
experiment are the followings:

34 Improving AlgoRythmics Teaching-Learning Environment …

International Journal of Instruction, April 2021 ● Vol.14, No.2

 What are the worst case scenarios with respect to the linear search algorithm if
we have or we do not have a guarantee that the searched element is included in
the list?

 How many elements are eliminated from the list (“search space”) by a single
“you are not the one” dance in the case of the linear/binary search algorithm?
After the corresponding binary tree was identified, students were helped to
realize the following formulas (k denotes the height of the tree): 2

0
+2

1
+…+2

k-1

= N; k = log2(N+1).

 With respect to the worst case behaviour of the bubble sort algorithm the
following formula was analyzed: 1+2+…(N-1) = N(N-1)/2.

Since during the phase-2 discussion we observed that for many students it was not
implicitly evident that sorting algorithms in best cases do not perform any swapping
operation, and in worst cases obligatorily perform a swap after each comparison
operation, questions referring to these cases were also included in the selection sort
analysis (phase-3) (Q3.1.1-4).

Procedure

During the first and third phases of the experiment the videos and the computer
animations were presented in front of all students (in an amphitheater) from the laptop
of the teacher (using a video projector). Students were asked to answer anonymously
(indicating only the program where they were enrolled and the profile of their high
school studies) the questions on a sheet of paper. The second phase was implemented in
seminar rooms with subgroups.

Phase-1: After the above mentioned brief introduction students were invited

 to watch the dance choreography of the linear search algorithm (for a list with 7
elements) twice (see Figure 1.a) and to answer questions Q1.1.1-7;

 to watch the dance choreography of the binary search algorithm (for a list with 7
elements) twice (see Figure 1.b) and to answer questions Q1.2.1-7;

 to watch the dance choreography and the animation of the bubble sort algorithm
(for a list with 10 elements) (see Figures 2.a and 2.b) and to answer questions
Q1.3.1-2;

 to answer the synthesis question (Q1.4.1).

Phase-2: By discussion with the students (Socratic questioning), the teacher helped them
(1) discover the correct answers for the previous day’s questions and (2) realize why
those answers are the right ones (teacher tried to confine only to ask questions).

Phase-3: Students were invited to watch the dance choreography and the animation of
the selection sort algorithm (for a list with 10 elements) (see Figures 3.a and 3.b) and to
answer questions Q3.1.1-4.

Kátai & Osztián 35

International Journal of Instruction, April 2021 ● Vol.14, No.2

Figure 1
(a) Linear search with Flamenco dance; (b) Binary search with Flamenco dance.

Figure 2
(a) Bubble sort with Hungarian folk dance; (b) Animating the Bubble sort algorithm.

Figure 3
(a) Selection sort with Gipsy folk dance; (b) Animating the Selection sort algorithm.

FINDINGS AND DISCUSSION

The learning material that had to be assimilated with respect to each algorithm can
roughly be divided in two parts: (1) students had to understand the strategy (or logic) of
the algorithm and then, building on this knowledge, (2) they had to imagine its
best/worst case behaviour. “Part-1 knowledge” had to be extracted mostly from the
algorithm visualisation. To help students realize “part-2 knowledge” to each algorithm,
a question sequence was attached. Group-0 had no prior knowledge with respect to the
entire learning material. Group-1/2 had prior experience only in “part-1 knowledge”.
Group-4 was initiated in both “part-1 and part-2 knowledge”. Although students’ scores
reflect their “part-2 knowledge”, this knowledge assumed “part-1 knowledge”.

36 Improving AlgoRythmics Teaching-Learning Environment …

International Journal of Instruction, April 2021 ● Vol.14, No.2

Statistical analysis was performed in Excel, using the student t-test and with significance
set to p<0.05. It included the phase-1 answers of all the three groups, and comparison of
the corresponding phase-1 versus phase-3 answers of group-0. Table 1 shows students’
results regarding phase-1 questions. For each group of questions, we computed the
average performance. It can be noticed that group-0 students’ scores are in line with
how intuitive the corresponding algorithm was. In the case of binary search (logarithmic
time complexity) the average performance was only 34%. It is reasonable to consider
the complexity level of the synthesis question as fitting between the levels of questions
regarding the quadratic bubble sort and logarithmic binary search algorithms.

Table 1
Performance results with respect to the phase-1 questions. (Since answering question
Q1.2.6 assumed relatively advanced mathematical knowledge, we eliminated it from our
analysis)

Linear search
(linear
complexity)
Q1.1.1-6

Binary search
(logarithmic
complexity)
Q1.2.1-5

Bubble sort
(quadratic
complexity)
Q1.3.1-2

Synthesis
question
Q1.4.1

Group-0 79% 34% 59% 51%

Group-1/2 86% 53% 49% 52%

Group-4 94% 76% 83% 65%

Interestingly, although students from group-1/2 had studied all the three algorithms
previously, they did not outperform group-0 consequently. No significant differences
were detected regarding the linear search and bubble sort algorithms and the synthesis
question. Moreover, in the case of bubble sort, group-0 even outperformed group-1/2.
The only significant difference (favouring group-1/2) was detected with respect to the
binary search algorithm (t-test, group-0 vs. group-1/2: Q1.2.1-5 (p=0.01<0.05)), the
least intuitive one.

Group-4 performed significantly better than group-1/2 in the case of all three algorithms
(t-tests, group-4 vs. group-1/2: Q1.1.1-6 (p=0.02<0.05); Q1.2.1-5 (p=0.000<0.05);
Q1.3.1-2 (p=0.000<0.05)). In the case of the synthesis question the difference was also
substantial but not significant (Q1.4.1 (p=0.07)). The fact that group-4 scored
consequently higher than the other two groups is a quite evident result. The questions
were directly connected to a topic they had already studied: algorithm complexity
analysis. As for the other two groups, this topic was unfamiliar.

On the other hand, group-1/2 students had a clear advantage over group-0 since “part-2
knowledge” had to be built on a knowledge that they already assimilated during their
high school studies. While group-1/2 only had to refresh the strategies of the algorithms,
group-0 students faced them for the first time. The fact that group-0 students (without
any explicit help from the instructor) were able to perform on questions Q1.1, Q1.2 and
Q1.4, shoulder-to-shoulder with their group-1/2 mates, partially supports our first
hypothesis that the analysed learning environment (including algorithm visualization
complemented with teacher prepared question sequence) has the potential to initiate
non-majors (without prior knowledge in programing) in computer algorithms.

Kátai & Osztián 37

International Journal of Instruction, April 2021 ● Vol.14, No.2

This conclusion is in line with prior research regarding Cognitive Apprenticeship
Theory (Collins et al., 1991; Caspersen & Bennedsen, 2007). Two basic teaching
methods related to this approach that we included in the phase-1 learning session were
modeling and scaffolding. Inviting students to watch a teacher-created visualization can
be seen as modelling since it allows students to observe how an expert implements the
algorithm on given input. By the attached question sequence we provided students with
a means of studying the algorithms from an algorithm efficiency perspective.
Interestingly, Aulls (2002) reported (after he observed a number of teachers as they
implemented constructivist activities in their classrooms) that the most effective teachers
applied scaffolding when students failed to make learning progress in a discovery
setting.

With respect to the effectiveness of the AlgoRythmics visualizations, other possible
contributing factors are:

 The attached questions supported students in focusing on the relevant aspects of
the dance choreography/animation. According to Rau, Michaelis and Fay
(2015), in “textual + graphical” settings the text could guide learners’ visual
attention as they process the graphical representation.

 The algorithms are illustrated by human movement. Recent research results on
the so-called human movement effect emphasize that observing human
movements (or producing our own body movement) can be cognitively
beneficial (Castro-Alonso et al., 2018). According to these authors, our
cognitive systems are wired to observe human movements.

 Surprising science-art combination (Katai, 2014c). According to Keller (1983),
providing novelty, incongruity and surprise are effective methods for arousing
motivation.

On the other hand, the fact that group-0 scored significantly lower than gropup-1/2 on
the questions attached to the least intuitive algorithm (binary search), and that both
group-0 and group-1/2 performed poorly relative to group-4, support our second
expectation that without explicit teacher guidance the potential this environment
incorporates can be explored only partially.

Comparing group-0 students’ phase-1 and phase-3 results strengthened us in this
observation. As can be seen in Table 2, 57% of students realized that 45 (N(N-1)/2)
swapping operations are needed for selection sort if the input sequence is sorted in
descending order (worst case). This is a significantly better result (t-test: p=0.05) than in
the case of the corresponding phase-1 question.

A “curious” particularity of the selection sort algorithm is that it implies N(N-1)/2
comparisons even in best case. Consequently, question Q3.1.1 was substantially more
difficult (less intuitive) than its corresponding question from phase-1 (Q1.3.1). The fact
that half of the students comprehended that the selection sort algorithm needs N(N-1)/2
comparisons and 0 swaps in the best case, is a noticeable result (taking into account that
they did not study the algorithm previously). During the second and third phases of the

38 Improving AlgoRythmics Teaching-Learning Environment …

International Journal of Instruction, April 2021 ● Vol.14, No.2

experiment group-0 students belonged to four sub-groups. A strange particularity of the
Q1.3.1-dataset is that the performance of group-0 students belonging to sub-group-4 is
only 14% and this value, in the case of the other three sub-groups, is 78%.

Table 2
Group-0 performance results with respect to the phase-1 and phase-3 sorting algorithms.
The brackets contain the correct answers for the corresponding questions. (Phase-1
items did not include questions with respect to the number of swaps/comparisons in the
best/worst case, respectively)

Best case
(comparison)

Best case
 (swap)

Worst case
 (comparison)

Worst case
(swap)

Phase-1
Bubble-sort

Q1.3.1 (9)
78%

- (0)
-

- (45)
-

Q1.3.2 (45)
40%

Phase-3
Selection-sort

Q3.1.1 (45)
51%

Q3.1.2 (0)
95%

Q3.1.3 (45)
71%

Q3.1.4 (45)
57%

Phase-3 results emphasize the importance of the phase-2 discussion built around the
phase-1 questions. Since the phase-3 learning environment was similar to the phase-1
setting, it is plausible to assume that phase-2 discussion contributed considerably to
students’ phase-3 performance. In addition, they performed better on the phase-3
algorithm, although the tutorial question-asking from phase-2 was limited to the phase-1
algorithms. The fact that students were able to extend their phase-1 comprehension to a
new algorithm suggests that phase-2 discussion helped students see beyond the specific
examples. Accordingly, phase-3 results confirm the hypothesis that the AlgoRythmics
environment, if supplemented with tutorial question-asking, could be an effective
instrument in introducing students with no prior knowledge in computing, even with
deeper CS concepts such as algorithm efficiency.

This result is in line with previous findings regarding the possible benefit of Socratic
questioning in CS education. For example, Wilson (1987) applied Socratic questioning
during debugging processes. He observed that this kind of tutor-student dialogue helped
students correct their misconceptions. We observed the same phenomenon: phase-2
Socratic questioning supported students in reanalyzing their phase-1 answers and,
consequently, being more prepared for the phase-3 task. Lane and VanLehn (2005) also
emphasize that Socratic questioning has the potential to help students in making
important observations to improve their programming knowledge. More recently a
chatbot was used (incorporated in an online learning environment) successfully to guide
students through the Socratic method in a group discussion (Le and Huse, 2016).

Limitations

Definitions of CT emphasize that we are dealing with a multifaceted skill or ability. If
we only consider the operational definition that ISTE (2020) attached to CT, then
algorithms and their time complexity are just two elements of a complex skill set.
Additionally, we did not follow the standard syllabus: usually, complexity aspects are
analyzed only after the strategy of the algorithm had been thoroughly studied.

Kátai & Osztián 39

International Journal of Instruction, April 2021 ● Vol.14, No.2

We concentrated on testing the efficiency of a particular algorithm visualization
incorporated into a specific learning environment without comparing it with other
possible approaches.

Another limitation could be that while all participants were involved in the first phase of
the learning session, during the second and third phases we focused only on group-0
students. The other two groups could have provided us with additional data for our
phase-3 analysis.

CONCLUSION

The AlgoRythmics YouTube channel (Katai & Toth, 2011; Katai et al., 2018) leads
instructors to a collection of ten algorithmic dance choreographies: bubble-, insertion-,
selection-, shell-, quick-, merge-, heap-sort, linear-, binary-search, and backtracking
illustrated by folkdance/flamenco/ballet performances. The AlgoRythmics web
application (Katai et al., 2020) supplements these videos with interactive computer
animations. Important characteristics of this teaching-learning environment are its
unified, artistically enhanced, human movement effect enriched, and CS free style. In
this article we analyzed this environment (as CT promoter tool) from the perspective of
contextualized computing education.

The basic question that motivated us in this research is as follows: what is the best
practice for incorporating the AlgoRythmics environment in the teaching learning
process of algorithms? In the research literature regarding the impact of instructional
guidance during teaching, there is a dispute between those advocating the hypothesis
that people learn best in an unguided or minimally guided environment (e.g., Papert,
1980) and those suggesting that novice learners should be provided with direct
instructional guidance (e.g., Sweller, 2003; Mayer, 2004). Kirschner et al. (2006) argue
that the superiority of guided instruction is grounded on our knowledge of human
cognitive architecture, expert-novice differences and cognitive load.

Our experience with the AlgoRythmics environment also underlines the importance of
instructional guidance in teaching learning algorithms. Research results reported in
previous investigations and findings of the present study support this line of research.
Even creating a visualization that illustrates the algorithm on different inputs can be
considered as a kind of instructional guidance. How much additional guidance is needed
depends on the on the complexity of the studied algorithm and the expressiveness of the
visualization. In the previous AlgoRythmics studies, participants were invited to
interactively orchestrate the studied algorithms and the environment assisted them in this
learning task. The immediate feedback offered can also be seen as clear instructional
guidance.

In this study this guidance was provided by targeted questioning (with and without
teacher guidance). In addition to previous studies that focused only on supporting
students to assimilate the strategy of the studied algorithms, we investigated if they were
able to build on this knowledge by extracting from visualizations some algorithm
efficiency related concepts too. Findings confirmed our expectation that AlgoRythmics
visualizations are expressive enough, if supplemented with targeted questions, to

40 Improving AlgoRythmics Teaching-Learning Environment …

International Journal of Instruction, April 2021 ● Vol.14, No.2

support students without prior knowledge in computing to assimilate the strategy of
some basic computer algorithms and imagine the best and worst case behaviour of these
algorithms.

An interesting further research topic would be to test the effectiveness of these methods
in combination. We are planning to investigate the following four phase learning
session: students are invited (1) to watch the dynamic visualization of the selected
algorithm; (2) to interactively orchestrate the algorithm on random inputs (the software
registers their activity); (3) to answer the attached question sequence regarding the best
and worst case behaviour of the algorithm; (4) to participate in a Socratic questioning
based on previous phase tasks.

Although the current intervention focused on first year engineering students, the findings
of this study might be valuable in the case of other categories of learners too.
Assimilating CT related concepts by analyzing dance choreographies could be an
attractive approach at all levels of education. Such an initiative would be in line with
those previously cited studies that have successfully combined computing education
with arts at primary, secondary and high school level. Since AlgoRythmics videos can
be used to introduce students to quite profound CS concepts too, these visualizations
could prove to be valuable tools for CS-majors too. For example, the heap sort
choreography displays how to perceive a unidimensional array as a binary tree, or the
number of ballerinas in the Four-queens choreography reflects the number of calls that a
recursive implementation of the algorithm implies, etc. Interestingly, the evaluation
committee of the “2013 Best Practices in Education Award” (organized by Informatics
Europe) points out that they “were impressed and appreciated this approach of
abstracting away almost all details that might hinder understanding the idea or principle
of an algorithm or a paradigm. The enactments thus not only can be used flexibly in
teaching environments irrespective of a particular programming- or spoken-language but
can be used as a starting point for the teacher to drill down into more technical
concepts” (Informatics Europe, 2013).

ACKNOWLEDGEMENTS

The authors wish to acknowledge the help of the Professional Art Institute ‘Muresul’
and the András Lóránt Company for their artistic support. The authors would like to
thank all subjects for participating in this research.

REFERENCES

Aho, A.V. (2012). Computation and computational thinking. The Computer Journal,
55(7), 832–835.

Ainsworth, S. E. (2006). DeFT: A conceptual framework for considering learning with
multiple representations. Learning and Instruction, 16(3), 183-198.

Aulls, M. W. (2002). The contributions of co-occurring forms of classroom discourse
and academic activities to curriculum events and instruction. Journal of educational
psychology, 94(3), 520.

Kátai & Osztián 41

International Journal of Instruction, April 2021 ● Vol.14, No.2

Berney, S., & Bétrancourt, M. (2016). Does animation enhance learning? A meta-
analysis. Computers & Education, 101, 150-167.

Boyer, K. E., Lahti, W., Phillips, R., Wallis, M. D., Vouk, M. A., & Lester, J. C. (2010,
March). Principles of asking effective questions during student problem solving. In
Proceedings of the 41st ACM technical symposium on Computer science education (pp.
460-464). ACM.

Caspersen, M. E., & Bennedsen, J. (2007). Instructional design of a programming
course – A learning theoretic approach. In Proceedings of the 3rd International
Workshop on Computing Education Research (pp. 111-122). ACM.

Castro-Alonso, J. C., Ayres, P., Wong, M., & Paas, F. (2018). Learning symbols from
permanent and transient visual presentations: Don't overplay the hand. Computers &
Education, 116, 1-13.

Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making
thinking visible. American Educator 15(3), 6-11.

Computer Science Teachers Association (CSTA). (2017). CSTA K-12 Computer
Science Standards. http://www.csteachers.org/standards

Daily, S. B., Leonard, A. E., Jörg, S., Babu, S., & Gundersen, K. (2014, March).
Dancing alice: exploring embodied pedagogical strategies for learning computational
thinking. In Proceedings of the 45th ACM technical symposium on Computer science
education (pp. 91-96). ACM.

Echeverría, L., Cobos, R., Machuca, L., & Claros, I. (2017). Using collaborative
learning scenarios to teach programming to non‐CS majors. Computer applications in
engineering education, 25(5), 719-731.

El-Zakhem, I. H. (2016). Socratic programming: An innovative programming learning
method. International Journal of Information and Education Technology, 6(3), 247.

Ghefaili, A. (2003). Cognitive apprenticeship, technology, and the contextualization of
learning environments. Journal of Educational Computing, Design & Online Learning,
4(1), 1-27.

Graesser, A. C., & Person, N. K. (1994). Question asking during tutoring. American
educational research journal, 31(1), 104-137.

Guzdial, M. (2010). Does contextualized computing education help?. ACM Inroads,
1(4), 4-6.

Guzdial, M., & Tew, A. E. (2006, September). Imagineering inauthentic legitimate
peripheral participation: an instructional design approach for motivating computing
education. In Proceedings of the second international workshop on Computing
education research (pp. 51-58). ACM.

Informatics Europe. (2013). Best Practices in Education Award.
http://www.informatics-europe.org/awards/education-award/2013.html

42 Improving AlgoRythmics Teaching-Learning Environment …

International Journal of Instruction, April 2021 ● Vol.14, No.2

International Society for Technology in Education (ISTE). (2020). ISTE Standards.
https://www.iste.org/standards

Katai, Z. (2014a, June). Selective hiding for improved algorithmic visualization. In
Proceedings of the 2014 conference on Innovation & technology in computer science
education (pp. 33-38). ACM.

Katai, Z. (2014b, June). Intercultural computer science education. In Proceedings of the
2014 Conference on Innovation & Technology in Computer Science Education (pp.
183-18). ACM.

Katai, Z. (2014c, June). Algorithmic thinking for ALL: A motivational perspective. In
Proceedings of the 2014 conference on Innovation & technology in computer science
education (pp. 353-353). ACM.

Kátai, Z. (2015). The challenge of promoting algorithmic thinking of both sciences‐and
humanities‐oriented learners. Journal of Computer Assisted Learning, 31(4), 287-299.

Katai, Z. (2020). Promoting computational thinking of both sciences- and humanities-
oriented students: an instructional and motivational design perspective. Educational
Technology Research and Development. https://doi.org/10.1007/s11423-020-09766-5

Katai, Z., Osztian, E., Osztian, P. R., Nagy, J. E., & Cosma, C. (2020). AlgoRythmics
(Version 2.2.0). Sapientia Hungarian University of Transylvania.
https://algorythmics.ms.sapientia.ro/

Katai, Z., Osztian, E., Osztian, P. R., & Vekov, G. K. (2018, January 30). AlgoRythmics
[Video]. Youtube. https://www.youtube.com/user/AlgoRythmics/

Katai, Z., & Toth, L. (2011, March 29). AlgoRythmics [Video]. Youtube.
https://www.youtube.com/user/AlgoRythmics

Keller, J. M. (1983). Motivational design of instruction. Instructional Design Theories
and Models: An Overview of Their Current Status, 1(1983), 383-434.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching. Educational psychologist,
41(2), 75-86.

Lane, H. C., & VanLehn, K. (2005). Teaching the tacit knowledge of programming to
noviceswith natural language tutoring. Computer Science Education, 15(3), 183-201.

Le, N. T., & Huse, N. (2016). Evaluation of the formal methods for the Socratic method.
In Proceedings of the 16th International Conference on Intelligent Tutoring Systems
(pp. 68-78).

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery
learning?. American psychologist, 59(1), 14.

Kátai & Osztián 43

International Journal of Instruction, April 2021 ● Vol.14, No.2

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books,
Inc..

Rau, M. A. (2016). Conditions for the effectiveness of multiple visual representations in
enhancing STEM Learning. Educational Psychology Review, 1-45.
https://doi.org/10.1007/s10648-016-9365-3.

Rau, M. A., Michaelis, J. E., & Fay, N. (2015). Connection making between multiple
graphical representations: A multi-methods approach for domain-specific grounding of
an intelligent tutoring system for chemistry. Computers & Education, 82, 460-485.

Razmov, V., & Anderson, R. (2006, March). Pedagogical techniques supported by the
use of student devices in teaching software engineering. In Proceedings of the 37th
SIGCSE technical symposium on Computer science education (pp. 344-348).

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, 22, 142-158.

Simon, B., Kinnunen, P., Porter, L., & Zazkis, D. (2010, June). Experience report: CS1
for majors with media computation. In Proceedings of the fifteenth annual conference
on Innovation and technology in computer science education (pp. 214-218). ACM.

Sweller, J. (2003). Evolution of human cognitive architecture. Psychology of learning
and motivation, 43, 216-266.

Tamim, S. R., & Grant, M. M. (2013). Definitions and uses: Case study of teachers
implementing project-based learning. Interdisciplinary Journal of problem-based
learning, 7(2), 3.

Tawfik, A. A., Graesser, A., Gatewood, J., & Gishbaugher, J. (2020). Role of questions
in inquiry-based instruction: towards a design taxonomy for question-asking and
implications for design. Educational Technology Research and Development, 1-26.

Tenenberg, J., & Murphy, L. (2005). Knowing what I know: An investigation of
undergraduate knowledge and self-knowledge of data structures. Computer Science
Education, 15(4), 297-315.

Tew, A. E., McCracken, W. M., & Guzdial, M. (2005, October). Impact of alternative
introductory courses on programming concept understanding. In Proceedings of the first
international workshop on Computing education research (pp. 25-35). ACM.

Tofade, T., Elsner, J., & Haines, S. T. (2013). Best practice strategies for effective use
of questions as a teaching tool. American journal of pharmaceutical education, 77(7),
155.

Wijnen, M., Loyens, S., Smeets, G., Kroeze, M., & van der Molen, H. (2017). Students’
and teachers’ experiences with the implementation of problem-based learning at a
university law school. Interdisciplinary Journal of Problem-Based Learning, 11(2), 1-
11.

44 Improving AlgoRythmics Teaching-Learning Environment …

International Journal of Instruction, April 2021 ● Vol.14, No.2

Wilson, J. D. (1987). A Socratic approach to helping novice programmers debug
programs. ACM SIGCSE Bulletin, 19(1), 179-182.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

Wood, Z. J., Muhl, P., & Hicks, K. (2016, February). Computational Art: Introducing
High School Students to Computing via Art. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (pp. 261-266). ACM.

Wu, S. P., & Rau, M. A. (2018). Effectiveness and efficiency of adding drawing
prompts to an interactive educational technology when learning with visual
representations. Learning and Instruction, 55, 93-104.

