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 This study developed 17-item physics problem-solving ability to measure the 
students’ performance in solving context-rich problems. In this process, 8 students 
were interviewed on how they solve physics problems. Qualitative analysis showed 
37 latent attributes that describe their ability. Attributes were surveyed to 370 
students to establish psychometrics via rating scale-graded response model (RS-
GRM) and to ensure psychometric assumptions through Mokken’s scale analysis 
(MSA). Analyses showed that there are 17 valid items or set of outcomes in 
designing assessment tasks that define what is to be learned as a problem solver. It 
represents a unidimensional construct (SRMSR=0.043) that provides more 
information to person ability that ranges from -2.0 to +2.0 values (SE2=0.81). The 
measurement information generated useful information in describing the students’ 
problem-solving ability. It also demonstrated a 3-ordered response expectations 
that could represent the solver’s actual reasoning as a a cognitive structure. This 
study noted that the ordered response requires further study and exploration. 

Keywords: context-rich problem, problem-solving ability, mokken’s scale analysis, 
rating scale-graded response model, assessment development 

INTRODUCTION 

Studies on assessing problem-solving have emerged since the conception of giving 
quality information to both students and teachers. Physics teachers highly value the ways 
of evaluating the students’ ability to solve problems (Adams & Wieman, 2007). Its 
effect is relevant in terms of attitude (Prince, 2004), informing the targeted outcomes 
towards curriculum improvements, and identification between novice, and expert 
problem solvers (Larkin et al., 1980).  However, most supplementary books used by the 
teachers may seem problematic because of their traditional approach as it draws 
repetition (Hollingworth & McLoughlin, 2001) and exercise. Its oversimplified nature 
has little significance to real-life problems. Meaning, assessing problem-solving requires 
the utilization of real-life contexts.  

The inclusion of real-life scenarios in word problems is called context-rich. It enables 
the students to construct reasoning and ideas which makes them more quality and less 
mathematical (Antonenko et al., 2011). Understanding how students solve context-rich 
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problems acknowledges the use of attributes perceived as assessment items rather than 
criteria. Several Scholars (Heller et al., 1992; Huffman, 1997; Murthy, 2007; Ogilvie, 
2007) developed scoring criteria and rubrics to examine assessment categories in 
problem-solving. This strategy would be difficult to use because there could be 
underlying items in the criteria. Assessment items are the latent attributes to the 
student’s problem-solving ability. It represents their thinking and learning in problem-
solving which are interpreted as learning outcomes (Jonassen, 1997) of the construct or 
the students’ context-rich problem-solving ability. 

In problem-solving assessment, the utilization of criteria and rubric scoring provides 
internal consistency of categories with total score measures in classical test theory 
(CTT). Each person has a true score of a construct if there were no errors in 
measurement. It is viewed that as the true score increases, the item responses of the 
same construct should also increase (Cappelleri et al., 2014). This testing is commonly 
used in scoring student performance that their true scores are based on the number of 
correct item responses. Meaning, the assumption of the measurement precision of a 
construct is said to be equal for every item irrespective of attribute levels (Jabrayilov et 
al., 2016). This study claims that item response theory (IRT) and its properties as 
measurement should be used because it remains constant regardless of another 
examination from a sample of a focused population. It gives measurement precision of 
each item in the construct (Stover et al., 2019) to provide information on its 
performance. IRT could also psychometrically establish response expectations of 
assessment items as performance scale in reasoning. This is given by the idea that a 
problem task involves a contextualized problem that situates the students to think (or 
schematize), and reason out (Newell, 1980). Hence, it is necessary to establish the 
assessment items or goals because it enables the alignment of problem-solving ability to 
the assessment tasks. 

Solving Context-rich Problems 

Most introductory physics subjects rely on traditional problem-solving that is scored 
based on the correctness of the numerical solutions. It gives students the partial credit 
for the solution characteristics compared to the ideal situations. This is attributed to 
assessing students’ performance in well-structured problem-solving. Usually, when 
students solve well-structured problems, they encounter difficulties further when 
challenged with multiple and complex tasks (Antonenko et al., 2011). Regrettably, they 
are generally accepted and widely used by teachers which in turn does not give further 
description of the students’ performance particularly on their ability to solve problems. 
It supports the Philippine context that Filipino students perform poorly in educational 
assessments and international tests in physics (Orleans, 2007). Further, the findings of 
the Program for International Student Assessment (PISA) 2018 showed that Filipino 
learners gained 357 scientific literacy score that is lower than 489-point average of the 
Organization for Economic Cooperation and Development (OECD).  Hence, using of 
contextualized problems should be necessary to attract productive student learning in 
physics at secondary, and university level. These problems are called context-rich or 
semi-structured which is a sub-category of open-ended problems (Shekoyan et al., 



 Pelobillo     857 

International Journal of Instruction, October 2022 ● Vol.15, No.4 

2007). Figure 1 shows an example of well-, and context-rich problem statements based 
on the example of O’Brien (2014: pp. 23-24). 

 
Figure 1 
O’Brien’s (2014) sample problem tasks 

Unlike well-structured problems, contextualized problems tell a short story that includes 
a justification for computing specific measures of real objects or phenomena (Heller & 
Hollabaugh, 1992). It is found that context-rich problems (CRPs) make physics more 
interesting because it facilitates understanding of physics concepts (Jonsson et al., 2007) 
meaning, an important aspect of knowledge construction (Santyasa et. al., 2020). It 
situates the student as a character to a specific context which is represented as a story, 
targeting a specific and intermediate physics concepts (e.g., thermodynamics, and 
electricity). Context-rich problems encourage critical thinking that enables the student to 
examine the context and apply physics principles and math operations to solve the 
problem. Hence, it must be structured in a way it encourages the student to decide the 
target variable and determine physics principles and assumptions to simplify the 
problem towards meaningful solutions.  

Assessing Physics Problem-solving 

When students solve problems, several authors recommended the use of rubrics to 
determine their scores. Docktor et al. (2016) argued that giving students aggregated 
scores based on correct answers gives an inadequate description of the students’ 
problem-solving performance. Further, Henderson et al. (2004) mentioned that 
aggregated scores do not provide information to students that are novice and expert 
solvers. The use of rubrics provides different dimensions of performance which include 
standards of attainment facilitates scoring across assignments (Jonsson & Svingby, 
2007; Mertler, 2001). Several scholars (Heller et al., 1992; Huffman, 1997; Murthy, 
2007; Ogilvie, 2007) have developed problem-solving rubrics that present similar 
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themes however, they may vary on their use as criteria across dimensions that can be 
difficult to use. This led to the development of Minnesota assessment of problem-
solving (MAPS) rubric of Docktor (2009). This rubric had been tested and analyzed via 
different sets of scoring and categories on varied types of problem solutions. The rubric 
arrived at 5 dimensions namely, specific application of physics, useful description, 
mathematical progression, mathematical progression, and physics approach. Given its 
reliability and validity however, the students’ ability to solve problems must be given a 
closer look to provide diagnostic information to assist teachers in helping the students 
acquire problem-solving ability. 

Problem-solving ability or students’ attributes are progress variables that conceptualize 
the developmental perspective of assessment (Wilson, 2008). When students’ responses 
and conceptions are linked to the progress variables, it then defines what is to be 
learned. This means that the progress variables are set of goals that could situate the 
solver in a problem space (Wood, 1983) making the problem, goal-oriented (Newell, 
1980). Solver’s responses rely on their reasoning as a cognitive structure (Biggs & 
Collis, 1982), and a description of structural thinking (Eseryel et al., 2013). Treating the 
attributes as progress variables could serve as intended cognitive learning outcomes.  

The Use of Item Response Theory 

Validity and reliability are important to educational assessments since the conception of 
test scores in producing information like cognitive performance, and effectiveness of a 
test. For over 100 years, the implementation of conventional measurements under 
classical test theory (CTT) has emerged in the testing field (Zanon et al., 2016) due to 
the problems of simple mathematical models (Ostini & Nering, 2006).  CTT assumes a 
common measurement precision for all individuals regardless of an attribute or item 
levels. It limits the possibility of group comparison per item levels given the same test 
with aggregated scores of a particular concept. Further, its sample dependency produces 
different levels of item difficulty which implies that CTT can only be done on the same 
sample. It also assumes equal measurement errors for all persons. This problem lies in 
the idea of different ability levels that will show different errors that evaluate any other 
construct (Zanon et al., 2016). To address its issue, item response theory (IRT) has 
emerged as its extension. This kind of modern measurement approach scales items and 
individuals, and evaluates item characteristics of unidimensional construct (Revicki et 
al., 2009). It predicts the ability of a person of a specific attribute to establish a 
relationship between a person’s set of traits and performance under a particular item 
(Hambleton et al., 1991). Further, IRT uses location parameters as item difficulty for 
dichotomous data. In multiple response formats such as rating scale, and ordered 
responses, it indicates the category thresholds between responses. Thresholds represent 
the cut-off points that correspond to a z-score and the level of a latent variable when a 
person might choose another response (Schivinski et al., 2018). The use of item 
precision parameter could discriminate individuals across the latent wherein larger 
discrimination provides more information about the student’s latent ability. Hence, IRT 
assumes that items under a unidimensional construct are unequally informative. 
Location thresholds, and discrimination parameters determine the accuracy of 
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instrument and measurement via test information function (TIF). It is visualized as a 
curve that indicates the precision of the entire scale wherein the peak represents the 
greatest information, and a flat curve represents high discrimination across latent traits. 
Overall, IRT models build a hypothetical unidimensional line along which the location 
of items and persons are aligned to the measures of ability and difficulty. In other words, 
fit items describe a single construct under the IRT assumptions. 

METHOD  

The use of exploratory sequential design generated a critical examination of students’ 
problem-solving ability. The first phase involved interviews of 8 science students with 
physics subjects in the University of Mindanao, Davao City, Philippines. The interview 
and probing questions were anchored to the MAPS rubric by Docktor (2009) since it 
provided analysis of the aforementioned scholars’ problem-solving criteria. Saturation 
(Legard et al., 2003), and coding in the qualitative phase generated 37 latent attributes 
that describe the students’ problem-solving ability which will then be used as assessment 
items. In phase 2, these items were surveyed to 370 students to ensure the observation of 
response sufficiency based on the guidelines of Linacre & Wright (1998). 

Quantitative analysis used a rating scale-graded response model (RS-GRM) in the 
family of polytomous IRT. This study also used Mokken’s scale analysis (Mokken, 
1971) because IRT is known to have strong assumptions of the unidimensionality of the 
construct. The measures of MSA such as scalability coefficient generates Mokken’s Rho 
to partition items into Mokken’s scale through an automated item selection algorithm 
(Ark, 2007). Its analysis was used in determining the response categories aside from the 
step ordering and calibration of the rating scale model (Andrich, 1978). Meaning, a 
uniform response category is a fundamental assumption of RSM because the attributes 
or items are tied to the latent trait (Ostini & Nering, 2006). RSM was then used to 
provide item-fit statistics such as infit and outfit based on the guidelines of Linacre & 
Wright (1998), and Smith (2000). Representing assessment items as learning 
expectations, moving the analysis from rating scale model to graded response model 
(GRM) was necessary. GRM variant of (Muraki, 1990) was used to further give item fit 
statistics such as RMSEA, and S-X2 (Pearson X2 statistic) p-values of each items to 
examine the model through the guidelines of Browne and Cudeck (1992), and Orlando 
& Thissen (2000, 2003).  

In IRT, the student’s problem-solving ability represents a latent trait (θ) and a 
continuum from for example, -2 to +2 where the average score is 0, and the greater its 
value, the greater item difficulty. GRM was used to determine the threshold parameters 
as item difficulty, denoting lower values as easier ability on each item scale. Further, its 
analysis involved slope parameters in each item to represent discrimination in measuring 
item differential capability (Watanabe et al., 2017). Lastly, test information function 
(TIF) was used to determine the reliability of how the latent trait provides information to 
a specific range of person ability. 
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FINDINGS AND DISCUSSION 

Checking IRT Assumptions 

Based on qualitative analysis of 8 recorded interviews, there are 37 items as latent 
attributes of problem-solving ability. Treating the attributes as a single latent construct 
allowed the use of IRT as a measurement theory. Hence, these items were surveyed to 
370 science students. Based on the guidelines of Linacre & Wright (1998) that each 
should have 10 or more response observations, the scale was optimized to a 3-point 
Likert scale. The attributes then, underwent Mokken’s scale analysis (MSA) to check 
the IRT assumptions. This kind of analysis has less restrictive assumptions with less-
demanding data to maintain the measurement properties before proceeding to parametric 
and non-parametric IRT (Ark, 2007). Unidimensionality, local dependence, and latent 
monotonicity were used in checking the assumptions with hypothesis testing on the item 
(Hi) and test (H) scalability coefficients. These coefficients convey which total score 
could rank accurately the persons on latent trait through test scalability coefficient (Ark, 
2007). Further, the monotonicity of MSA was utilized to determine the number of 
violation of assumptions (crit. statistic). Hence, it generated score reliability of 
Mokken’s rho and unbiased reliability estimator in partitioning items into Mokken’s 
scale through aisp. Table 1 shows the results. 

Table 1 
MSA measures 
Item no. Attributes Hi # vi crit. aisp 

1 Organizing the gathered information 0.45 21 43 1 

2 Compare and contrast of solutions to the problem 0.4 21 48 1 

3 Justifying the quality of the solution 0.47 26 56 1 

4 Remembering what's going on in the problem situation 0.44 18 25 1 

5 Determining formulas useful to the solution process 0.42 17 59 1 

6 Compare and contrast of shared experiences 0.39 21 53 1 

7 Checking the quality of the solution 0.49 19 35 1 

8 Gaining awareness of the solution requirements 0.46 17 47 1 

9 Agreeing to the problem solution and quality 0.44 28 64 1 

10 Explaining the solution validity 0.49 24 60 1 

11 Recalling the past experience related to the problem 0.37 26 62 1 

12 
Reviewing the basic and prior concepts in relation to 
the problem 

0.43 20 43 1 

13 Justifying the problem solving process 0.49 23 54 1 

14 Justifying the concept using personal experience 0.45 9 39 1 

15 Telling personal experience in order 0.44 18 54 1 

16 Giving concepts and examples related to the problem 0.46 8 43 1 

17 
Manipulating equations as mathematical solution 
process 

0.4 17 50 1 

18 Evaluating the problem scenario 0.44 16 27 1 

19 Compare and contrast of the quality of the solution 0.49 18 51 1 

 



 Pelobillo     861 

International Journal of Instruction, October 2022 ● Vol.15, No.4 

Table 1 
Continued 
Item no. Attributes Hi # vi crit. aisp 

20 Checking the validity of the solution 0.46 17 24 1 

21 Asking self-regulatory questions 0.26 39 109 0 

22 Elaborating the problem scenario 0.47 17 26 1 

23 Identifying what the problem is asking 0.47 14 59 1 

24 Evaluating the quality of the solution 0.5 24 67 1 

25 Extending examples related to the concept 0.43 10 21 1 

26 Checking errors in the solution  process 0.4 15 49 1 

27 Asking further questions 0.32 32 70 1 

28 Incorporating symbols in the illustration 0.44 12 24 1 

29 Arguing with the gathered concepts 0.4 20 26 1 

30 Giving physics-related assumptions 0.42 14 29 1 

31 Illustrating free body diagrams 0.41 16 26 1 

32 Explaining the concepts of example situations 0.49 10 40 1 

33 Illustrating the problem scenario 0.49 19 59 1 

34 Finding out misconceptions in the solution process 0.47 15 43 1 

35 Determining the variables of the problem 0.44 16 38 1 

36 Outlining the concepts and solutions to the problem 0.49 15 19 1 

37 Making hand-gestures to imagine the situation 0.33 38 75 1 

It shows that the majority of item scalability coefficients are moderately scalable 
(0.4≤H<0.5) which made the whole test also moderately scalable (H=0.434). This 
means that there are some items that may seriously violate the assumptions of 
monotonicity given with the number of violations such as item 21 (crit.=109). These 
values are necessary assumptions to decide which items to remove further from the scale 
(Palmgren et al., 2018). Overall, the MSA assumptions are met based on the Mokken’s 
rho of 0.96. The majority of the items are locally independent, and they belong to a 
uniform scale via automated item selection (aisp) except item 21 (asking self-regulatory 
questions). 

Rating Scale Model 

Demonstration of internal consistency (e.g., point biserial correlations, Cronbach’s 
alpha, and quantity of correct responses out of overall score) of items within a specific 
category are aggregated measures which is common to classical problem-solving 
assessment. Meaning, its classical measures vary across samples (Reeve, 2003). In 
contrast, IRT assumes that the person may have differences in the behavior of selecting 
a response from the scale that may produce item difficulty measures. Table 2 shows 
RSM interpretation of the assessment items’ performance. It lists the item fit statistics of 
37 items such as p-value and mean-square (MNSQ) and z-standardized (ZSTD) of infit 
and outfit. 
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Table 2 
RSM item fit statistics 

Items/Attributes 
p-

value 

Outfit Infit 

MNSQ ZSTD MNSQ ZSTD 

Organizing the gathered information 0.12 1.08 1.09 0.92 -1.16 

Compare and contrast of solutions to the problemb 0.02 1.15 1.62 1.02 0.37 

Justifying the quality of the solution 0.91 0.90 -1.31 0.92 -1.25 

Remembering what's going on in the problem 

situation 
0.79 0.94 -0.80 0.96 -0.64 

Determining formulas useful to the solution 

process 
0.20 1.06 0.66 1.10 1.41 

Compare and contrast of shared experiences b 0.00 1.35 3.60 1.26 3.64 

Checking the quality of the solution 0.99 0.82 -2.34 0.86 -2.14 

Gaining awareness of the solution requirements 0.53 0.99 -0.10 0.96 -0.51 

Agreeing to the problem solution and quality 0.47 1.00 0.05 0.95 -0.69 

Explaining the solution validity 0.96 0.87 -1.83 0.90 -1.57 

Recalling the past experience related to the 

problem b 
0.00 1.22 2.51 1.26 3.60 

Reviewing the basic and prior concepts in relation 

to the problem 
0.05 1.13 1.61 1.10 1.48 

Justifying the problem solving process 0.98 0.85 -2.01 0.87 -1.90 

Justifying the concept using personal experience 0.03 1.15 1.91 1.12 1.73 

Telling personal experience in order c 0.01 1.17 1.89 1.20 2.68 

Giving concepts and examples related to the 

problem 
0.05 1.13 1.64 1.11 1.61 

Manipulating equations as mathematical solution 

process c 
0.02 1.12 1.85 1.19 2.53 

Evaluating the problem scenario 0.20 1.06 0.82 1.05 0.77 

Compare and contrast of the quality of the solution 1.00 0.80 -2.77 0.82 -2.85 

Checking the validity of the solution 0.87 0.91 -1.08 0.95 -0.72 

Asking self-regulatory questions a 0.00 2.26 8.50 1.63 7.32 

Elaborating the problem scenario 0.78 0.94 -0.81 0.96 -0.63 

Identifying what the problem is asking 0.81 0.93 -0.72 1.00 0.05 

Evaluating the quality of the solution 1.00 0.76 -3.37 0.78 -3.44 

Extending examples related to the concept 0.05 1.13 1.63 1.11 1.50 

Checking errors in the solution  process b 0.01 1.19 2.01 1.21 2.87 

Asking further questions a 0.00 1.68 6.05 1.38 4.98 

Incorporating symbols in the illustration c 0.00 1.26 2.97 1.20 2.84 

Arguing with the gathered concepts b 0.00 1.40 4.40 1.35 4.61 

Giving physics-related assumptions b 0.00 1.20 2.22 1.21 2.82 

Illustrating free body diagrams a 0.00 1.27 3.09 1.27 3.69 

Explaining the concepts of example situations 0.54 0.99 -0.14 0.93 -1.10 

Illustrating the problem scenario 0.19 1.06 0.84 1.07 0.98 

Finding out misconceptions in the solution process 0.35 1.02 0.34 1.04 0.58 
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Table 2 
Continued 

Items/Attributes 
p-
value 

Outfit Infit 

MNSQ ZSTD MNSQ ZSTD 

Determining the variables of the problem 0.06 1.12 1.48 1.15 2.14 

Outlining the concepts and solutions to the 
problem 

0.97 0.86 -1.88 0.83 -2.68 

Making hand-gestures to imagine the situation a 0.00 1.54 5.99 1.31 4.27 

a Items removed in the first iteration. b Items removed in the second iteration. c Items 
removed in the third iteration. 

Series of item deletion and iteration produced good infit and outfit of the 24 items. Most 
of the deleted items gained lower p-values (<0.05) because they exceed the “fit” criteria 
(MNSQ > 1.4, ZSTD > +2.0). The deletion of 13 items resulted in strong test scalability 
(H=0.50) of 24 items via MSA. The assessment gained a productive measurement to 
problem-solving with its optimized 3-response category. Further, averaged MNSQ infit 
(0.98) and outfit (0.98) imply that the 24 items resemble 95% of the latent trait based on 
marginal reliability as a measure of construct validity. The measurement systemcan 
distinguish students of high and low problem-solving ability, given with high person 
reliability of 0.95. 

Graded Response Model 

The assessment items correspond to the student’s problem-solving ability wherein the 
optimized scale could be uniformly ordered. Meaning, it should be operating 
equivalently across items, and categories should be the same size across items and not 
unique to each item (Ostini & Nering, 2006). The context of item location parameters 
should be based on GRM. In this way, the items are permitted to vary in discrimination 
to demonstrate the changes in the item location over time while keeping the category 
boundaries fixed (Ostini & Nering, 2006). Thus, scoring students’ problem-solving 
ability relies on the 3-ordered response expectation. GRM shows the estimation 
parameters in table 3. 

Table 3 
GRM item parameters 

Attributes 
Slope 
(a) 

Thresold Item-fit 
RMSEA 

b1 b2 S-X2 p.val. 

Organizing the gathered information 1.77 -1.21 0.80 30.77 0.58 0.000 

Justifying the quality of the solution 2.01 -1.12 0.58 20.68 0.95 0.000 

Remembering what's going on in the 
problem situation c 

1.98 -1.13 0.50 45.61 0.22 0.021 

Determining formulas useful to the 
solution process 

1.63 -1.47 0.19 39.63 0.27 0.019 

Checking the quality of the solution 2.41 -1.01 0.37 26.23 0.66 0.000 

Gaining awareness of the solution 
requirements c 

2.15 -1.07 0.41 38.14 0.46 0.003 
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Table 3 
Continued 

Attributes 
Slope 
(a) 

Threshold Item-fit 
RMSEA 

b1 b2 S-X2 p.val. 

Agreeing to the problem solution and quality 1.81 -1.11 0.78 31.95 0.62 0.000 

Explaining the solution validity 2.39 -0.70 0.67 24.11 0.90 0.000 

Reviewing the basic and past concepts in relation to 

the problem c 
1.64 -0.88 0.77 55.25 0.14 0.025 

Justifying the problem solving process 2.45 -0.70 0.66 28.36 0.65 0.000 

Justifying the concept using personal experience b 1.65 -0.58 1.05 39.75 0.12 0.026 

Giving concepts and examples related to the 
problem 

1.63 -0.56 1.03 19.95 1.00 0.000 

Evaluating the problem scenario 1.94 -0.72 0.73 43.61 0.25 0.020 

Compare and contrast of the quality of the solution 2.64 -0.76 0.67 20.02 0.86 0.000 

Checking the validity of the solution 2.28 -0.97 0.39 37.99 0.18 0.025 

Elaborating the problem scenario 2.05 -0.81 0.67 40.12 0.38 0.012 

Identifying what the problem is asking c 2.03 -1.34 0.18 44.99 0.24 0.020 

Evaluating the quality of the solution 2.67 -0.93 0.54 31.90 0.37 0.013 

Extending examples related to the concept a 1.69 -0.74 0.97 60.80 0.12 0.026 

Explaining the concepts of example situations 1.96 -0.65 1.03 25.71 0.85 0.000 

Illustrating the problem scenario a 2.09 -0.57 0.70 62.27 0.04 0.034 

Finding out the misconceptions in the solution 

process 
1.91 -0.55 0.91 24.93 0.92 0.000 

Determining the variables of the problem 1.68 -0.99 0.58 31.74 0.82 0.000 

Outlining the concepts and solutions to the problem 2.21 -0.87 0.73 44.35 0.13 0.027 

a Items removed in the first iteration. b Items removed in the second iteration. c Items 
removed in the third iteration. 

Table 3 shows the deletion of 7 items based on GRM iterations because they gained 
high RMSEA and low S-X2 p-values, and some items cannot be manifested as problem-
solving ability. Although GRM’s RMSEA values of 24, and 17 items are just the same 
given as 0.051, 17 items showed an improved standardized root mean square residual 
(SRMSR) value of 0.043 than the 24 items (SRMSR=0.048). The reason being, SRMSR 
is most appropriate in evaluating the goodness of fit (GOF) index with its value of ≤ 
0.05 indicating adequate fit that corresponds to the average size of misfit (Maydeu-
Olivares, 2013). Retainment of 17 items based on RS-GRM iterations showed an 
improved RMSEA (0.051) and SRMSR (0.043) which explains 94% of the latent trait. 

The discrimination estimates ranged from 1.63 to 2.67 indicating that the items 
distinguished high and low problem-solving ability because of their positive values. The 
item difficulty ranges from -1.47 to 1.03 which accounts for the 2 estimated thresholds. 
In item 24 (evaluating the quality of the solution) for example, its first threshold (b1=-
0.93) elicits the probability of affirming fist response category in optimized scale. It 
means higher its value as in b2=0.53 corresponds to the probability of endorsing the 
second, and third response category in the scale. Hence, it predicted the person ability 
and established a relationship between the performance and person trait in every item. 
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Measurement Information 

Based on the measurement precision, figure 2 shows x-axis as estimated problem-
solving score or person ability depicted on a z-score. Test information function is 
inversely proportional to standard errors (SE), making SE=1/(information)1/2. This 
means more information, the better the measurement precision (Revicki et al., 2009) 
with smaller measurement errors (SE<<0.5).  

 
Figure 2 
Test information function (IΘ) with standard error (SEΘ) 

The figure shows that a test information of 5 provides 0.81 reliability (SE2). Meaning, 
the 17 attributes provide most of the information to the person ability from -2.0 to +2.0 
given the range of item difficulty. The measurement system of the problem-solving 
ability is precise, and able to identify between novice, and expert problem solvers. 

IMPLICATIONS 

These valid set of assessment items belong to the cognitive problem-solving ability that 
represents the set of outcomes or progress variables (Wilson, 2008). These outcomes 
could be used in stimulating the solver to respond, and schematize to a contextualized 
situation hence, making it a goal-oriented problem. Figure 3 shows an example. 
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Figure 3 
Problem-solving task 

In the figure, a context-rich problem involves a contextualized situation, and a question 
that is anchored to the valid set of assessment items as in item 10 (explaining the validity 
of the solution). It tells a story that attracts the students to reason out and calculate 
quantities to facilitate conceptual understanding (Heller and Hollabaugh, 1992; Jonsson 
and Svingby, 2007). These items could be also anchored when designing activities in 
physics courses such as collaborative problem solving and project-based learning 
because it could monitor and contribute to learner’s progress (Baran et al., 2018) Its 
implication to monitoring progress in problem-based learning conceptualizes the 
developmental perspective of formative assessment. Meaning, they are set of items or 
outcomes that define what is to be learned as a problem solver. It reflects a goal-oriented 
problem (Newell, 1980), reasoning as a cognitive structure based on Biggs & Collis 
(1982) taxonomy framework, and a description of structural thinking (Eseryel et al., 
2013). Thus, it could provide student diagnosis as a useful information to guide teachers 
in teaching problem-solving. 

CONCLUSION 

The use of rating scale-graded response model can be used as a measurement method in 
developing and validating assessment items as a set of outcomes. Moving the analysis 
from checking the IRT assumptions to RSM, and to GRM generated a series of 
iterations that produced a valid set of 17 items with an optimized scale. Measurement 
information such as discrimination, and difficulty of an item provide a useful 
information in describing the students’ problem-solving ability that is attributed to 
uniformly ordered response expectations. The 3-ordered response should be further and 
qualitatively explored in the context of the solver’s actual reasoning as cognitive 
structure. 
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